Left Termination of the query pattern f(b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

f1(X) :- g1(s13 (X)).
f1(s1(X)) :- f1(X).
g1(s14 (X)) :- f1(X).


With regard to the inferred argument filtering the predicates were used in the following modes:
f1: (b)
g1: (b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

The argument filtering Pi contains the following mapping:
f_1_in_g1(x1)  =  f_1_in_g1(x1)
s_11(x1)  =  s_11(x1)
if_f_1_in_1_g2(x1, x2)  =  if_f_1_in_1_g1(x2)
g_1_in_g1(x1)  =  g_1_in_g1(x1)
if_g_1_in_1_g2(x1, x2)  =  if_g_1_in_1_g1(x2)
if_f_1_in_2_g2(x1, x2)  =  if_f_1_in_2_g1(x2)
f_1_out_g1(x1)  =  f_1_out_g
g_1_out_g1(x1)  =  g_1_out_g

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

The argument filtering Pi contains the following mapping:
f_1_in_g1(x1)  =  f_1_in_g1(x1)
s_11(x1)  =  s_11(x1)
if_f_1_in_1_g2(x1, x2)  =  if_f_1_in_1_g1(x2)
g_1_in_g1(x1)  =  g_1_in_g1(x1)
if_g_1_in_1_g2(x1, x2)  =  if_g_1_in_1_g1(x2)
if_f_1_in_2_g2(x1, x2)  =  if_f_1_in_2_g1(x2)
f_1_out_g1(x1)  =  f_1_out_g
g_1_out_g1(x1)  =  g_1_out_g


Pi DP problem:
The TRS P consists of the following rules:

F_1_IN_G1(X) -> IF_F_1_IN_1_G2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> IF_G_1_IN_1_G2(X, f_1_in_g1(X))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(s_11(X)) -> IF_F_1_IN_2_G2(X, f_1_in_g1(X))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

The argument filtering Pi contains the following mapping:
f_1_in_g1(x1)  =  f_1_in_g1(x1)
s_11(x1)  =  s_11(x1)
if_f_1_in_1_g2(x1, x2)  =  if_f_1_in_1_g1(x2)
g_1_in_g1(x1)  =  g_1_in_g1(x1)
if_g_1_in_1_g2(x1, x2)  =  if_g_1_in_1_g1(x2)
if_f_1_in_2_g2(x1, x2)  =  if_f_1_in_2_g1(x2)
f_1_out_g1(x1)  =  f_1_out_g
g_1_out_g1(x1)  =  g_1_out_g
F_1_IN_G1(x1)  =  F_1_IN_G1(x1)
IF_G_1_IN_1_G2(x1, x2)  =  IF_G_1_IN_1_G1(x2)
G_1_IN_G1(x1)  =  G_1_IN_G1(x1)
IF_F_1_IN_1_G2(x1, x2)  =  IF_F_1_IN_1_G1(x2)
IF_F_1_IN_2_G2(x1, x2)  =  IF_F_1_IN_2_G1(x2)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

F_1_IN_G1(X) -> IF_F_1_IN_1_G2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> IF_G_1_IN_1_G2(X, f_1_in_g1(X))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(s_11(X)) -> IF_F_1_IN_2_G2(X, f_1_in_g1(X))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

The argument filtering Pi contains the following mapping:
f_1_in_g1(x1)  =  f_1_in_g1(x1)
s_11(x1)  =  s_11(x1)
if_f_1_in_1_g2(x1, x2)  =  if_f_1_in_1_g1(x2)
g_1_in_g1(x1)  =  g_1_in_g1(x1)
if_g_1_in_1_g2(x1, x2)  =  if_g_1_in_1_g1(x2)
if_f_1_in_2_g2(x1, x2)  =  if_f_1_in_2_g1(x2)
f_1_out_g1(x1)  =  f_1_out_g
g_1_out_g1(x1)  =  g_1_out_g
F_1_IN_G1(x1)  =  F_1_IN_G1(x1)
IF_G_1_IN_1_G2(x1, x2)  =  IF_G_1_IN_1_G1(x2)
G_1_IN_G1(x1)  =  G_1_IN_G1(x1)
IF_F_1_IN_1_G2(x1, x2)  =  IF_F_1_IN_1_G1(x2)
IF_F_1_IN_2_G2(x1, x2)  =  IF_F_1_IN_2_G1(x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

The argument filtering Pi contains the following mapping:
f_1_in_g1(x1)  =  f_1_in_g1(x1)
s_11(x1)  =  s_11(x1)
if_f_1_in_1_g2(x1, x2)  =  if_f_1_in_1_g1(x2)
g_1_in_g1(x1)  =  g_1_in_g1(x1)
if_g_1_in_1_g2(x1, x2)  =  if_g_1_in_1_g1(x2)
if_f_1_in_2_g2(x1, x2)  =  if_f_1_in_2_g1(x2)
f_1_out_g1(x1)  =  f_1_out_g
g_1_out_g1(x1)  =  g_1_out_g
F_1_IN_G1(x1)  =  F_1_IN_G1(x1)
G_1_IN_G1(x1)  =  G_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {F_1_IN_G1, G_1_IN_G1}.
With regard to the inferred argument filtering the predicates were used in the following modes:
f1: (b)
g1: (b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

Pi is empty.

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

Pi is empty.

Pi DP problem:
The TRS P consists of the following rules:

F_1_IN_G1(X) -> IF_F_1_IN_1_G2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> IF_G_1_IN_1_G2(X, f_1_in_g1(X))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(s_11(X)) -> IF_F_1_IN_2_G2(X, f_1_in_g1(X))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

Pi is empty.
We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

F_1_IN_G1(X) -> IF_F_1_IN_1_G2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> IF_G_1_IN_1_G2(X, f_1_in_g1(X))
G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(s_11(X)) -> IF_F_1_IN_2_G2(X, f_1_in_g1(X))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

Pi is empty.
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

The TRS R consists of the following rules:

f_1_in_g1(X) -> if_f_1_in_1_g2(X, g_1_in_g1(s_11(s_11(s_11(X)))))
g_1_in_g1(s_11(s_11(s_11(s_11(X))))) -> if_g_1_in_1_g2(X, f_1_in_g1(X))
f_1_in_g1(s_11(X)) -> if_f_1_in_2_g2(X, f_1_in_g1(X))
if_f_1_in_2_g2(X, f_1_out_g1(X)) -> f_1_out_g1(s_11(X))
if_g_1_in_1_g2(X, f_1_out_g1(X)) -> g_1_out_g1(s_11(s_11(s_11(s_11(X)))))
if_f_1_in_1_g2(X, g_1_out_g1(s_11(s_11(s_11(X))))) -> f_1_out_g1(X)

Pi is empty.
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

G_1_IN_G1(s_11(s_11(s_11(s_11(X))))) -> F_1_IN_G1(X)
F_1_IN_G1(X) -> G_1_IN_G1(s_11(s_11(s_11(X))))
F_1_IN_G1(s_11(X)) -> F_1_IN_G1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {F_1_IN_G1, G_1_IN_G1}.